

Keybase SSH CA Bot Documentation!

	Introduction

	Getting Started
	Updating environment variables

	Advanced Configuration
	Environment Variables

	Developer Options

	Best Practices
	Teams and Channels

	Network Isolation

	Realms

	Architecture
	Network Architecture

	Troubleshooting
	make generate refuses to overwrite an existing key

	kssh is slow, but it works

	kssh times out

	SSH rejects the connection

	Keybase is down

	Default Users and kssh –provision

	Other

	Jumpboxes and Bastion Hosts

	OS Support

	Contributing and Additional Info
	keybaseca

	kssh

	Architecture

	Integration Tests

	SSH Certificate Authorities (CAs)
	How an SSH CA Works

	Future Improvements

	Host Key Signing

Introduction

This repository provides the tooling to control SSH access to servers (without needing to install anything
on them) based simply on cryptographically provable membership in Keybase teams.

SSH supports a concept of certificate authorities (CAs) where you can place a single public key on the server,
and the SSH server will allow any connections with keys signed by the CA cert. This is how a lot of large companies
manage SSH access securely; users can be granted SSH access to servers without having to change the keys that are
deployed on the server.

This repo provides the pieces for anyone to build this workflow on top of Keybase:

	generation scripts and a guide to set up the Keybase team and server ssh configuration

	a wrapper around ssh (kssh) for any end user to get authenticated using the certificate authority

	a chatbot (keybaseca) which listens in a Keybase team for kssh requests. If the requester is in the team, the bot will sign the request with an expiring signature (e.g. 1 hour), and then the provisioned server should authenticate as usual.

Removing a user’s ability to access a server is as simple as removing them from the Keybase team.

Getting Started

kssh allows you to define realms of servers where access is granted based off of
membership in different teams. Imagine that you have a staging environment that everyone should be granted access to and
a production environment that you want to restrict access to a smaller group of people. For this exercise we’ll also set
up a third realm that grants root access to all machines.

Start by creating a new Keybase user to use for the CA chatbot:

keybase signup # Creates a new Keybase user to use for the SSH CA bot
keybase paperkey # Generate a new paper key

Note that this system will not work if you attempt to use the same user for the CA chatbot as for kssh. It is required
to use distinct users.

Then create {TEAM}.ssh.staging, {TEAM}.ssh.production, {TEAM}.ssh.root_everywhere as new Keybase subteams
and add the bot to those subteams. Add users to those subteams based off of the permissions you wish to grant
different users

On a secured server (note that this server only needs docker installed) that you wish to use to run the CA chatbot:

git clone git@github.com:keybase/bot-sshca.git
cd bot-sshca/docker/
cp env.list.example env.list
nano env.list # Fill in the values including the previously generated paper key
make generate # Generate a new CA key

Running make generate will output a list of configuration steps to run on each server you wish to use with the CA chatbot.
These commands create a new user to use with kssh (the developer user), add the CA’s public key to the server, and
configure the server to trust the public key.

Now you must define a mapping between Keybase teams and the users on the servers that members of those teams are
allowed to access. If you wish to make the user foo on your server available to anyone in team.ssh.bar,
create the file /etc/ssh/auth_principals/foo with contents team.ssh.bar.

More concretely following the current example setup:

	For each server in your staging environment:

	Create the file /etc/ssh/auth_principals/root with contents {TEAM}.ssh.root_everywhere

	Create the file /etc/ssh/auth_principals/developer with contents {TEAM}.ssh.staging

	For each server in your production environment:

	Create the file /etc/ssh/auth_principals/root with contents {TEAM}.ssh.root_everywhere

	Create the file /etc/ssh/auth_principals/developer with contents {TEAM}.ssh.production

Now on the server where you wish to run the chatbot, start the chatbot itself:

make serve # Runs inside of docker for ease of use

You can confirm that the bot is running by sending the message ping @bot_username in any of the configured team chat
channels (if CHAT_CHANNEL is configured, the message must be sent in that specific channel). The bot should reply with
pong @your_username.

Now you can download the kssh binary and start SSHing! See https://github.com/keybase/bot-sshca/releases to download the most
recent version of kssh for your platform.

sudo mv kssh-{platform} /usr/local/bin/kssh
sudo chmod +x /usr/local/bin/kssh

kssh developer@staging-server-ip # If in {TEAM}.ssh.staging
kssh developer@production-server-ip # If in {TEAM}.ssh.production
kssh root@server # If in {TEAM}.ssh.root_everywhere

We recommend building kssh yourself and distributing the binary among your team (perhaps in Keybase Files!).

Updating environment variables

If you update any environment variables, it is necessary to restart the keybaseca service. This can be done
by running make restart. Note that it is not required to re-run make generate.

Note that this means kssh will not work for a brief period of time while the container restarts.

Advanced Configuration

The SSH CA bot is configured via environment variables. This documents lists the different environment variables
used by the bot and their purpose.

Environment Variables

TEAMS

The TEAMS environment variable configures which teams the SSH CA bot will use to grant SSH access.

Examples:

export TEAMS="team.ssh"
export TEAMS="team.ssh.prod"
export TEAMS="team.ssh.prod,team.ssh.staging,team.ssh.root_everywhere"

CA_KEY_LOCATION

The CA_KEY_LOCATION environment variable configures where the CA bot will store the CA key. It is recommended to
ensure that the CA key is stored in a secure location. Defaults to /mnt/keybase-ca-key.

Examples:

export CA_KEY_LOCATION="/etc/cakey"
export CA_KEY_LOCATION="~/secure/cakey"

KEY_EXPIRATION

The KEY_EXPIRATION environment variable configures the validity length of keys signed by the bot. A key provisioned
via kssh is valid for this length of time before kssh will automatically reprovision another key. It is recommended
to keep the key expiration window to a relatively short period of time. By default, signed key s expire after one
hour. Valid formats are +30m, +1h, +5h, +1d, +3d, +1w, etc

Examples:

export KEY_EXPIRATION="+2h"
export KEY_EXPIRATION="+10m"
export KEY_EXPIRATION="+1w" # not recommended to set it to a time period this long

LOG_LOCATION

The LOG_LOCATION environment variable configures where logs from the CA bot will be stored. It is recommended to store these logs in a
secure location for audit purposes. One potential option is storing logs in a KBFS subteam dedicated to admins.
If not set, logs go to stdout.

Examples:

export LOG_LOCATION="/keybase/team/teamname.ssh.admin/keybaseca_audit.log"

STRICT_LOGGING

The STRICT_LOGGING environment variable defines the behavior of the bot if it fails to save an audit log entry.
By default, if the CA bot fails to write a log to a file it will simply send it to stdout. If it is critical to
maintain correct audit logs, the STRICT_LOGGING option will cause the CA bot to panic and shutdown if it is
unable to save logs.

Examples:

export STRICT_LOGGING="true"
export STRICT_LOGGING="false"

CHAT_CHANNEL

The CHAT_CHANNEL environment variable controls where communication between the bot and users will take place.
It specifies a specific team and channel. This may be useful if subteams are being used for more purposes
than just SSH access. For example, one could use team.prod to grant SSH production access and for a secret
sharing bot used to share other credentials. One would then want to configure the CA bot to use a separate
channel (eg #ssh-provision) for provision requests so that the general channel could be used for lower volume
purposes. Note that this means that all users of the SSH bot must have access to this channel.

Examples:

export CHAT_CHANNEL="team.prod#ssh-provision"
export CHAT_CHANNEL="team.ssh_bot#general"

Announcement

The ANNOUNCEMENT environment variable contains a string that will be announced in all of the configured teams when
the bot is started. This is useful if you would like the bot to announce the fact it has started and granted access in
a given team. The ANNOUNCEMENT environment variable supports a number of templating variables that will be instantiated
based off of the current config. These are:

	{USERNAME} will be replaced with the username of the bot

	{CURRENT_TEAM} will be replaced with the team that the message is being sent in

	{TEAMS} will be replaced with the comma separated list of teams that the bot is running in

Examples:

export ANNOUNCEMENT="SSH CA bot starting up..."
export ANNOUNCEMENT="Hello! I'm {USERNAME} and I'm an SSH bot! See github.com/keybase/bot-sshca for information on using Keybase for SSH."
export ANNOUNCEMENT="Hello! I'm {USERNAME} and I'm an SSH bot! I'm currently listening in {TEAMS}."
export ANNOUNCEMENT="Hello! I'm {USERNAME} and I'm an SSH bot! Being in {CURRENT_TEAM} will grant you SSH access to certain servers. Reach out to @dworken for more information."

Timeout

The KEYBASE_TIMEOUT environment specifies the number of seconds to wait for Keybase operations. If you are running
the bot on an especially slow computer (ie a Raspberry Pi) or with a high latency internet connection, you may need
to tune this. Defaults to 5 seconds.

Examples:

export KEYBASE_TIMEOUT="5"
export KEYBASE_TIMEOUT="15"

Developer Options

These environment variables are mainly useful for dev work. For security reasons, it is recommended always to run a
production CA chat bot on an isolated machine. These options make it possible to run a CA chat bot on a machine where
you currently are logged into another account.

Examples:

KEYBASE_HOME_DIR: /tmp/keybase/
KEYBASE_PAPERKEY: "paper key goes here"
KEYBASE_USERNAME: teamname-sshca-bot

Best Practices

Teams and Channels

The SSH CA bot user needs to have write access in all of the teams used for
granting SSH access in order for it to be able to store kssh client configs
associated with each team. Since access to a team grants SSH access to servers,
it is recommended to minimize the number of users with admin or owner
permissions in the teams. Individual users of kssh only need to be given the
read permission since they do not need to be able to edit or create files
associated with a team.

It is also recommended to mute all notifications in the configured teams in
order to minimize the number of notifications you get.

If you are using other bots in the same teams as the SSH CA bot (or if you wish
to have normal conversation in those teams), you can use the CHAT_CHANNEL
environment variable in order to configure a specific chat channel for all SSH
CA messages.

Network Isolation

Due to the highly sensitive nature of the SSH CA bot, it is recommended to
configure firewalls in order to block all access to the server running the CA
bot. It is not recommended to use kssh to access the server of the CA bot
itself in order to make it easier to respond to any outages.

Realms

There are two general approaches one can take when defining realms of servers.
The first approach (described in the getting started directions) is to define
realms for staging and production. This approach is useful for the common
scenario where all developers should be given access to the staging environment
but only certain people should be given access to production. The second
approach is a more granular approach where you can define realms associated
with teams. For example, one could have a realm of web servers, a realm of
database servers, … where a specific group of people is responsible for each
class of server.

Architecture

The Keybase SSH CA system works according to this diagram:

[image: Architecture Diagram]Architecture Diagram

Note that this means that you do not need to modify your servers in any
way or run any additional processes on your servers other than a standard
OpenSSH daemon.

Network Architecture

Since all communication between the kssh client and the SSH CA server happens over Keybase chat, it is possible (and recommended)
to firewall off the SSH CA server (where this bot is running) so it cannot be reached from the general internet. Additionally, note that the SSH servers
that trust the SSH CA do not need to communicate with Keybase’s servers or with the CA server and thus it is also possible
to firewall off the SSH servers from the general internet. Clients running kssh need to have Keybase running locally with
a connection to Keybase’s servers.

Troubleshooting

This file contains some general directions and thoughts on troubleshooting the code in this repo. This is not meant
to be a comprehensive troubleshooting guide and is only a jumping off point.

make generate refuses to overwrite an existing key

In order to force make generate to overwrite the existing CA key (note that this will delete the existing CA
key which means kssh will not work with any servers it currently works with), simply run:

FORCE_WRITE=true make generate

kssh is slow, but it works

When kssh starts, it has to search the KV store for every team you are in for
the kssh config, which specifies the information that is needed in order to
communicate with the CA chatbot. If you are only in a few teams, this is
relatively fast but this can become much slower as the number of teams
increases. You can avoid this search to reduce startup time by setting a
default bot via kssh --set-default-bot cabotname.

kssh times out

If kssh times out with a message similar to:

Generating a new SSH key...
Requesting signature from the CA....
Failed to get a signed key from the CA: timed out while waiting for a response from the CA

It means that for whatever reason, kssh is not receiving a response from the CA
chatbot when it sends messages in Keybase chat. First, ensure that the CA
chatbot is currently running. Next, attempt to determine what is happening by
inspecting the chat messages inside of the teams configured with the chatbot.
You should see a series of Ack and AckRequest messages going back and forth
prior to a Signature_Request: and a Signature_Response: exchange. Ensure
that you and the chatbot are in the correct teams such that they can read and
respond to the messages. In addition, review the log output from the keybaseca
chatbot. Note that it is required to run the keybaseca chatbot as a different
user than you are using for kssh.

SSH rejects the connection

This likely means that you have not configured the SSH server correctly.
Confirm that on the SSH server you are trying to access:

	/etc/ssh/ca.pub has an SSH public key in it

	/etc/ssh/auth_principals/username-of-ssh-user has the name of your Keybase team in it (or multiple comma separated keybase teams)

	/etc/ssh/sshd_config has the below two lines somewhere in it:

TrustedUserCAKeys /etc/ssh/ca.pub
AuthorizedPrincipalsFile /etc/ssh/auth_principals/%u

Also, ensure that these permissions are correctly set:

chmod 0645 /etc/ssh/auth_principals/
chmod 0644 /etc/ssh/auth_principals/*
chmod 0644 /etc/ssh/ca.pub

If that all looks good, review the getting started directions and ensure that
you have followed the steps correctly. Additionally, it is recommended to
compare your sshd_config file with the stock one for your OS to look for any
non-standard config options. For example, setting UsePAM no may prevent the
SSH CA from working. (sshca.md also has some additional
information on how SSH CAs work that may be helpful). If you would like to
follow an example, see the code in the tests/ directory which contains
integration tests (focus on Dockerfile-sshd for an example SSH server setup).
If none of that works, the best strategy is to run SSH on the server on an
alternate port and review the debug information. On the server run
/usr/sbin/sshd -dd -D -p 2222 and on the client run kssh -p 2222 user@server and inspect the debug logs.

Keybase is down

If Keybase is down, the bot will not work since it relies on Keybase chat for
communication. In this scenario, you can manually sign SSH keys with the CA
key. This can be done via keybaseca sign --public-key /path/to/key.pub.
Alternatively, this can be done manually without relying on any of the tooling
in this repository. To do so, place the CA private key in ~/cakey and the CA
public key in ~/cakey.pub. Then run the command:

ssh-keygen \
 # The location of the ca key:
 -s ~/cakey \
 # A unique ID for each key. Used to audit key usage
 -I unique-key-id \
 # The comma separated list of principals you wish to sign the key for. Eg "team.ssh.prod,team.ssh.staging,team.ssh.root_everywhere"
 -n "team.ssh.prod,team.ssh.staging,team.ssh.root_everywhere" \
 # How long the signature is valid for. +1d means one day. Valid units are `h` for hour, `d` for day, `w` for week
 -V +1d \
 # Specify the password on the CA key (if exported via `keybaseca backup` there is no password)
 -N "" \
 # The location of the public key you wish to sign
 /path/to/key.pub

You can then use the signed SSH key to SSH via ssh -i /path/to/key.pub user@server.

Default Users and kssh –provision

Default users are implemented using a custom SSH config file that inherits from
the default one. This means that if you run:

kssh --set-default-user developer
kssh --provision
scp foo server:~/

It will not use the default user. There are two ways to work around this. If
you do not need the default user to be kssh specific (eg if kssh is your
primary way of accessing certain servers), then you can simply configure this
default user globally by adding the below lines to ~/.ssh/config

Host *
 User developer

If you do not want to do this, you can run scp with the kssh specific config
file via:

scp -F ~/.ssh/kssh-config foo server:~/

Or analogously for rsync:

rsync -e "ssh -F $HOME/.ssh/kssh-config" foo server:~/

It may be useful to define aliases in your bashrc to simplify this:

alias kscp='kssh --provision && scp -F ~/.ssh/kssh-config'
alias krsync='kssh --provision && rsync -e "ssh -F $HOME/.ssh/kssh-config"'

Other

For any other issues, please open a Github issue or ping @dworken on Keybase!
We want to make this project as reliable as possible so please let us know if
there are any ways we can improve the project.

Jumpboxes and Bastion Hosts

kssh should work correctly with jumpboxes and bastion hosts as long as they are configured to trust the SSH CA and the usernames are correct. For example:

kssh -J developer@jumpbox.example.com developer@server.internal

This can also be made easier by setting the kssh default ssh-username locally, then you won’t have to specify it for each server.

kssh --set-default-user developer
kssh -J jumpbox.example.com server.internal

OS Support

It is recommended to run the server component of this bot on linux and running it in other environments is untested.
kssh is tested and works correctly on Linux, macOS, and Windows. If running on Windows, note that there is a dependency
on the ssh binary being in the path. This can be installed in a number of different ways including
Chocolatey [https://chocolatey.org/packages/openssh] or the
built in version [https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse] on
modern versions of windows.

Contributing and Additional Info

There are two separate binaries built from the code in this repo:

keybaseca

keybaseca is the CA server that exposes an interface through Keybase chat.
This binary is meant to be run in a secure location.

NAME:
 keybaseca - An SSH CA built on top of Keybase

USAGE:
 keybaseca [global options] command [command options] [arguments...]

VERSION:
 0.0.1

COMMANDS:
 backup Print the current CA private key to stdout for backup purposes
 generate Generate a new CA key
 service Start the CA service in the foreground
 help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:
 --help, -h show help
 --version, -v print the version

kssh

kssh is the replacement SSH binary. kssh handles provisioning (via the
keybaseca-bot) new temporary SSH keys and is meant to be installed on each
user’s laptop.

NAME:
 kssh - A replacement ssh binary using Keybase SSH CA to provision SSH keys

USAGE:
 kssh [kssh options] [ssh arguments...]

VERSION:
 0.0.1

GLOBAL OPTIONS:
 --help Show help
 -v Enable kssh and ssh debug logs
 --provision Provision a new SSH key and add it to the ssh-agent. Useful if you need to run another
 program that uses SSH auth (eg scp, rsync, etc)
 --set-default-bot Set the default bot to be used for kssh. Not necessary if you are only in one team that
 is using Keybase SSH CA
 --clear-default-bot Clear the default bot
 --bot Specify a specific bot to be used for kssh. Not necessary if you are only in one team that
 is using Keybase SSH CA
 --set-default-user Set the default SSH user to be used for kssh. Useful if you use ssh configs that do not set
					 a default SSH user
 --clear-default-user Clear the default SSH user
 --set-keybase-binary Run kssh with a specific keybase binary rather than resolving via $PATH

Architecture

Config

Keybaseca is configured using environment variables (see docs/env.md for
information on all of the options). When keybaseca starts, it writes a client
config JSON blob to the KV store [https://keybase.io/docs/bots/kvstore] for
each team in $TEAMS, at namespace __sshca, entry key kssh_config. This
client config is how kssh determines which teams are using kssh and the needed
information about the bot (eg the channel name, the name of the bot, etc). When
keybaseca stops, it deletes all of the client configs.

kssh reads the client config in order to determine how to interact with a
bot. kssh does not have any user controlled configuration. It does have one
local config file stored in ~/.ssh/kssh-config.json that is used to store a
few settings for kssh. By default, this config file is not used. It is only
created and meant to be interacted with via the --set-default-bot,
--clear-default-bot, --set-default-user, --clear-default-user flags.

Communication

kssh and keybaseca communicate with each other over Keybase chat. If the
CHAT_CHANNEL environment variable is specified in keybaseca’s environment,
keybaseca will only accept communication in the specified team and channel.
This configuration is passed to kssh clients via the client configs stored in
the KV store [https://keybase.io/docs/bots/kvstore]. If the CHAT_CHANNEL
environment variable is not specified then keybaseca will accept messages in
any channel of any team listed in the TEAMS environment variable. All
communication happens via the Go chat bot library.

Prior to sending a SignatureRequest, kssh sends a series of AckRequest
messages. An AckRequest message is sent until kssh receives an Ack from
keybaseca. This is done in order to ensure that kssh has correctly connected to
the chat channel and that the bot is responding to messages. Afterwards, a
SignatureRequest packet is sent and keybaseca parses it and returns a signed
key. Note that only public keys and signatures are sent over Keybase chat and
private keys never leave the devices they were generated on.

SSH Operations

When the ssh-keygen command is available, ssh keys are generated via the
ssh-keygen command. In this case, generated SSH keys are ed25519 keys. If the
ssh-keygen command is not available, SSH keys are generated in pure go code and
are ecdsa keys.

keybaseca uses the ssh-keygen binary in order to complete all key signing
operations.

KBFS

keybaseca supports logging to a local or KBFS file. In order to ensure that
keybaseca can run inside of docker (which does not support FUSE filesystems
without adding the CAP_SYS_ADMIN permission), all KBFS interactions are done
via keybase fs ... commands. This makes it so that keybaseca can run in
unprivileged docker containers.

Integration Tests

This project contains integration tests that can be run via
./integrationTest.sh. The integration tests depend on docker and
docker-compose. The first time you run them, they will walk you through
creating two new live keybase accounts to be used in the tests. The credentials
for these accounts will be stored in tests/env.sh.

SSH Certificate Authorities (CAs)

As described on our blog [https://keybase.io/blog/keybase-ssh-ca], SSH CAs are a way of building SSH authentication on
top of a signing SSH keys. This document expands on how SSH CAs work, the different modes of operation, possible
improvements, and other interesting things that can be done with CAs.

How an SSH CA Works

An SSH CA key is just a normal SSH key. This bot generates keys via:

ssh-keygen -t ed25519 -f ca-key -m PEM

A signature on a SSH key is a certificate that contains some additional information. A certificate contains:

	The public key of the signed key

	A key ID that can be used to identify who the key was issued to

	A serial number that can be used manage revocation lists

	A validity period where the key is considered valid only within that period of time

	A list of principals

A list of principals on a certificate is simply strings that are shared for access control. The field is often used
to encode roles a user has or groups that they are in, anything that helps the server decide whether or not to
allow access (and how much access to grant). We use this field to include a list of keybase teams that the user
is in. And the servers are configured to expect the same values (more below). As an example, here is the information
encoded in a certificate created by this bot:

$ ssh-keygen -L -f ~/.ssh/keybase-signed-key---cert.pub
/home/david/.ssh/keybase-signed-key---cert.pub:
 Type: ssh-ed25519-cert-v01@openssh.com user certificate
 Public key: ED25519-CERT SHA256:wdzTWhCrVeJrxRIC1KU5nJr8FbxxCUJt1IVeG7HYjmc
 Signing CA: ED25519 SHA256:OEhTm77qM7ZDwb5oltxt78FIpKraXCzxoaboi/KpNbM
 Key ID: "08a093ec-cb4e-4bc2-9800-825095418397:981b88e2-a214-4075-af77-72da9600f34f"
 Serial: 0
 Valid: from 2019-07-31T11:21:00 to 2019-07-31T12:22:50
 Principals:
 sshcademo.staging
 sshcademo.prod
 sshcademo.root_everywhere
 sshcademo.bot_access
 Critical Options: (none)
 Extensions:
 permit-X11-forwarding
 permit-agent-forwarding
 permit-port-forwarding
 permit-pty
 permit-user-rc

This certificate which was created by the CA bot is the bot’s cryptographic assertion that I am in the specified teams.
If I then attempt to SSH into a server with this certificate, it is the responsibility of the server to decide whether
or not to allow the connection. This is done via adding two lines to /etc/ssh/sshd_config:

TrustedUserCAKeys /etc/ssh/ca.pub
AuthorizedPrincipalsFile /etc/ssh/auth_principals/%u

The first line specifies that /etc/ssh/ca.pub contains the CA public key (as generated by ssh-keygen above). The
second line is how we define a mapping between the principals (for this bot: the Keybase teamnames) and the SSH users
they are granted access to. For example, if we wanted this server to allow people with the principal sshcademo.root_everywhere
to use the root user and people with the principal sshcademo.staging to use the “developer” user, we would create two files.
First, /etc/ssh/auth_principals/root with contents sshcademo.root_everywhere and second /etc/ssh/auth_principals/keybase
with contents sshcademo.staging.

When the SSH server accepts the connection, it will log the key ID and the serial number which can be combined with
the CA bot’s audit logs in order to track a connection to a specific keybase user.

Accepted publickey for developer from 65.202.161.38 port 56914 ssh2: ED25519-CERT ID e662bf1e-0855-41e9-8951-87bf8c0b3614:f650a363-cd34-4ab0-b6bf-52faa120364d (serial 0) CA ED25519 SHA256:OEhTm77qM7ZDwb5oltxt78FIpKraXCzxoaboi/KpNbM

For more information on SSH CAs, here are a few more useful sources:

	https://code.fb.com/security/scalable-and-secure-access-with-ssh/

	https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/sec-using_openssh_certificate_authentication

	https://medium.com/uber-security-privacy/introducing-the-uber-ssh-certificate-authority-4f840839c5cc

Future Improvements

Below are a few ideas for future improvements to this project. PRs welcome!

Key Encryption

Currently the CA key is stored on the filesystem unencrypted by the CA bot. As long as the CA bot is run on a well
isolated machine, this is not seen as a significant security weakness. Nonetheless, this could be improved upon by adding
options that allow for encrypting the CA key.

Revocation

With an SSH CA it is possible to revoke signed SSH keys via revocation lists. A revocation list is a file on the server
that contains a list of revoked keys. It is likely impractical to manually manage a revocation list, so this could be
done via a cron job that periodically updates the revocation list. One of the main difficulties of designing this feature
as part of the SSH CA bot is that a design goal of this bot was to not require running Keybase on every server. Thus,
this revocation list would need to be somehow updated independent of Keybase.

Host Key Signing

SSH CAs can be used to sign SSH host keys. This would remove the below message and strengthen SSH by switching it away
from a TOFU model.

$ ssh root@daviddworken.com
The authenticity of host 'daviddworken.com (2604:a880:400:d0::38c4:2001)' can't be established.
ECDSA key fingerprint is SHA256:MmB6/g0vDrMkanuRc46n6JCDYPaPKHYsbDpLhQ3y1Yg.
Are you sure you want to continue connecting (yes/no)?

This feature has not been included because signing host keys is significantly different
from signing user keys. Despite this, it could still be a useful feature to build on top of Keybase.

Index

Alternate Deploy Options

We include example docker-compose and kubernetes files for deploying the SSH CA:

	docker-compose-ca.yml.example

	sshca.yml.example

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Keybase SSH CA Bot Documentation!

 		
 Introduction

 		
 Getting Started

 		
 Updating environment variables

 		
 Advanced Configuration

 		
 Environment Variables

 		
 TEAMS

 		
 CA_KEY_LOCATION

 		
 KEY_EXPIRATION

 		
 LOG_LOCATION

 		
 STRICT_LOGGING

 		
 CHAT_CHANNEL

 		
 Announcement

 		
 Timeout

 		
 Developer Options

 		
 Best Practices

 		
 Teams and Channels

 		
 Network Isolation

 		
 Realms

 		
 Architecture

 		
 Network Architecture

 		
 Troubleshooting

 		
 make generate refuses to overwrite an existing key

 		
 kssh is slow, but it works

 		
 kssh times out

 		
 SSH rejects the connection

 		
 Keybase is down

 		
 Default Users and kssh –provision

 		
 Other

 		
 Jumpboxes and Bastion Hosts

 		
 OS Support

 		
 Contributing and Additional Info

 		
 keybaseca

 		
 kssh

 		
 Architecture

 		
 Config

 		
 Communication

 		
 SSH Operations

 		
 KBFS

 		
 Integration Tests

 		
 SSH Certificate Authorities (CAs)

 		
 How an SSH CA Works

 		
 Future Improvements

 		
 Key Encryption

 		
 Revocation

 		
 Host Key Signing

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

